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Abstract
The possibility of large-scale attacks using chemical warfare agents (CWAs) has exposed the
critical need for fundamental research enabling the reliable, unambiguous and early detection
of trace CWAs and toxic industrial chemicals. This paper presents a unique approach for the
identification and classification of simultaneously present multiple environmental
contaminants by perturbing an electrochemical (EC) sensor with an oscillating potential for the
extraction of statistically rich information from the current response. The dynamic response,
being a function of the degree and mechanism of contamination, is then processed with a
symbolic dynamic filter for the extraction of representative patterns, which are then classified
using a trained neural network. The approach presented in this paper promises to extend the
sensing power and sensitivity of these EC sensors by augmenting and complementing sensor
technology with state-of-the-art embedded real-time signal processing capabilities.

Keywords: electrochemical sensor, environmental contaminants, symbolic dynamics

(Some figures may appear in colour only in the online journal)

1. Introduction

The US defense establishments have long considered the
possible use of chemical warfare agents (CWAs) and thus have
continued efforts to develop sensors for the ambient detection
of CWAs to protect troops in battlefields as well as sensors
suitable for civilian use in places such as airports, railroad
stations, large public and private office buildings, theaters,
sports arenas, etc.

Intense research efforts in the past have led to
the development of several sophisticated analytical and
measurement techniques, broad and vast in types, applications
and methods. Several thorough review papers detail thousands
of papers in the field in the past two decades [1–3]. A subset
of chemical sensors are electrochemical (EC) sensors, which
have two principal modes of electroanalytic measurement:

potentiometric and amperometric [4]. Potentiometric analysis
uses the equilibrium potential of a given electrode to determine
the presence of an ionic specie. The electrode must be carefully
chosen such that its interaction with the ion of interest can
be predicted and the corresponding ion concentration can be
determined. Typically, this class of sensors has detection limits
of the order of 100 nanomoles per liter of the concentration of
the ion present in a particular oxidation state [5]. Alternatively,
amperometric measurement techniques monitor the current as
a function of the applied potential. By varying the applied
potential, multiple species can be detected by one sensor,
and typically the detection limits are lower than that of
potentiometric techniques [5].

For environmental monitoring applications, simultaneous,
multi-species gas detection is desirable. However, due to
the variability of contaminant concentration, coupled with
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the presence of multiple confounding contaminant species
and the variation of other key variables such as flow rate,
temperature and relative humidity (RH) [6–10], accurate
detection and determination can become quickly convoluted
and imprecise. Some groups have used potentiometric
measurement techniques for the detection of single gases
[11–13], whereas most groups use amperometric measurement
techniques coupled with signal processing to delineate the
specific cases for gas detection [8–10, 14–16].

This paper describes an onboard real-time signal
processing technique to extract statistically significant low-
dimensional characteristic patterns from dynamic responses of
sensors exposed to contaminant vapors. Three gases, N2, H2,
CO, and mixtures of these gases in varying proportions were
used as contaminants to demonstrate proof-of-concept. Even
though chemically very distinct from the CWAs, these gases
serve to demonstrate the efficacy of the algorithm in identifying
and correctly classifying mixtures of gases, a capability crucial
for real world application of sensors.

The results obtained promise to extend the sensing
power and sensitiveness of EC sensors by augmenting and
complementing the sensor technology with state-of-the-art
embedded real-time signal processing capabilities. In order
to identify a broad range of contaminants, it is clear that
both physical insight into the underlying EC processes and
advanced signal processing techniques need to be further
developed and employed simultaneously.

2. Technical approach

An EC sensor consists of electrodes (e.g., working electrode,
counter electrode and reference electrode). Gaseous species
diffuse to the electrodes where the species are either oxidized
or reduced. The potential difference between the working
electrode and the counter electrode (in a two-electrode system,
for example) can be quantified by the Nernst equation and
depends on the species present at each electrode. If an
external circuit controls the potential across the sensor, then
the resulting electrical current that is passed through the
external circuit can be measured. The current response, being
highly sensitive to the potential difference across the sensor
and therefore to the species present, forms the basis of
amperometric species detection techniques, which performs
efficiently as long as the target gases have substantially
different amperometric signatures.

At the root of this signal processing technique is the idea
of perturbing an EC sensor with an oscillating potential rather
than static voltage levels for the extraction of statistically rich
information from the current response. The dynamic response
is a function of the degree and mechanism of contamination
by different species, and therefore carries signatures of the
operating condition which can be extracted in the form of low-
dimensional pattern vectors for the correct classification of
gases.

For the purpose of extracting relevant patterns from
the current response, a variety of pattern extraction and
classification tools are available, each with certain strengths
and weaknesses. Pattern recognition methods such as Bayesian

filtering, which is both model-based and dynamic data-driven,
is capable of detecting parametric or nonparametric changes
in the model; however, a sufficiently accurate model needs
to be available. The Kalman (extended Kalman) filter [17] is
often adequate for linear (linearized) systems, but it may fail to
capture the dynamics of a nonlinear system, specifically with
non-additive uncertainties [18]. Recent literature has reported
Monte Carlo Markov chain techniques such as particle filtering
(PF) [19], and sigma point techniques such as unscented
Kalman filtering (UKF) [20] that yield numerical solutions
to Bayesian state estimation problems and have been applied
for pattern detection in nonlinear dynamical systems [21].
Both UKF and PF are elegant methods which perform well
in a variety of problems but may suffer from high memory
requirements and long execution times.

In addition to Bayesian filtering, there exist other classes
of well-known pattern recognition tools such as artificial neural
networks (ANN), principal component analysis (PCA) and
Kernel regression analysis (KRA) for pattern change detection
[22]. In the class of ANN, mutilayer perceptron [23] and radial
basis function [24] configurations have been widely used for
the detection of anomalous patterns. PCA [25] and KRA [26]
are also commonly used for data-driven pattern recognition.

In this paper, a recently reported data driven signal
processing algorithm called symbolic dynamic filtering (SDF)
has been used for pattern extraction from the current response
signals. Rao et al [27] have extensively studied the relative
advantages and drawbacks of SDF as a pattern extraction tool
in comparison to particle filter and unscented Kalman filter as
well as ANN and PCA.

The problem of identification of characteristic statistical
patterns using SDF is formulated in the following section in
terms of observation-based estimation of process variables.

2.1. Pattern extraction with symbolic dynamic filtering

This section presents a brief summary of the underlying
concepts and essential features of a novel data-driven pattern
identification tool called SDF [28]. The concept of SDF is built
upon the principles of several disciplines including symbolic
dynamics [29], statistical pattern recognition [30], information
theory [31] and probabilistic finite state machines [32].

While the details are reported in recent publications [28],
the essential concepts of space partitioning [33], symbol
sequence generation, construction of a finite-state machine
and pattern recognition, all of which form the backbone of this
pattern identification framework, are consolidated here and
succinctly described for self-sufficiency and clarity.

2.1.1. Symbolic dynamic encoding. Let � ∈ R
n be a compact

(i.e., closed and bounded) region, within which the trajectory
of the dynamical system is circumscribed. The region � is
partitioned into a finite number of (mutually exclusive and
exhaustive) cells, so as to obtain a coordinate grid. Let the
cell, visited by the trajectory at a time instant, be denoted as
a random variable taking a symbol value from the alphabet
�. An orbit of the dynamical system is described by the time
series data as {x0, x1, . . . , xk, . . .} with xi ∈ �, which passes
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Figure 1. Symbolic time series analysis based pattern identification [34].

through or touches one of the cells of the partition. Each initial
state x0 ∈ � generates a sequence of symbols defined by a
mapping from the phase space into the symbol space as

x0 → s0s1s2 . . . sk . . . , (1)

where each si, i = 0, 1, . . . , takes a symbol from the alphabet
�. The mapping in equation (1) is called symbolic dynamics
as it attributes a legal (i.e., physically admissible) sequence of
symbols to the system dynamics starting from an initial state.

Figure 1 pictorially elucidates the concepts of partitioning
a finite region of the phase space and the mapping from the
partitioned space into the symbol alphabet. This represents
a spatial and temporal discretization of the system dynamics
defined by the trajectories. Figure 1 also shows the conversion
of the symbol sequence into a finite-state machine and
generation of the state probability vectors as explained in the
following subsections.

The time series data-set of selected observable outputs
such as the current density or the terminal voltages can be
used for partitioning and symbolic dynamic encoding (see
section 2.2 for further details).

2.2. Analytic signal space partitioning

A crucial step in symbolic time series analysis is the
partitioning of the phase space for symbol sequence generation
[35]. This paper presents a partitioning method, called analytic
signal space partitioning (ASSP) [36, 37], for symbolic time
series analysis. The underlying concept of ASSP partitioning
is built upon the Hilbert transform of the observed real-valued
data sequence into the corresponding complex-valued analytic
signal.

The Hilbert transform [38] of a real-valued signal x(t) is
defined as

x̃(t) = H[x](t) = 1

π

∫
R

x(τ )

t − τ
dτ. (2)

That is, x̃(t) is the convolution of x(t) with 1
πt over the real

field R, which is represented in the Fourier domain as

F [̃x](ξ ) = −i sgn(ξ ) F[x](ξ ), (3)

where sgn(ξ ) =
{+1 if ξ > 0
−1 if ξ < 0

. The corresponding

complex-valued analytic signal is defined as

A[x](t) = x(t) + i x̃(t) and (4)

A[x](t) = A(t) exp(i ϕ(t)), (5)

where A(t) and ϕ(t) are called the instantaneous amplitude
and instantaneous phase of A[x](t), respectively.

Given a set of real-valued time series data, the Hilbert
transform of this data-set yields a pseudo-phase plot that is
constructed from the analytic signal by a bijective mapping
of the complex domain onto the R

2, i.e., by plotting the
real and imaginary parts of the analytic signal on the x
and y axes, respectively. The time-dependent analytic signal
in equation (4) is now represented as a (one-dimensional)
trajectory in the two-dimensional pseudo-phase space.

Let � be a compact region in the pseudo-phase space,
which encloses the trajectory. The objective here is to partition
� into finitely many mutually exclusive and exhaustive
segments, where each segment is labeled with a symbol.
The segments are determined by magnitude and phase of the
analytic signal and also from the density of data points in these
segments. That is, if the magnitude and phase of a data point
of the analytic signal lies within a segment or on its boundary,
then that data point is labeled with the corresponding symbol.
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This symbol generation process is called ASSP [36] and the
resulting set of (finite) symbols is called the alphabet �.

One possible way of partitioning � is to divide the
magnitude and phase of the time-dependent analytic signal
in equation (4) into uniformly spaced segments between
their minimum and maximum values. This is called uniform
partitioning. An alternative method, known as maximum
entropy partitioning [39], maximizes the entropy of the
partition, which imposes a uniform probability distribution
on the symbols. In this partitioning, parts of the state space
with rich information are partitioned into finer segments than
those with sparse information. The ASSP algorithm makes use
of either one or both of these partitioning methods.

2.3. Probabilistic finite-state machine construction

Using the discrete-time, discrete-valued stochastic sequence
created by the ASSP (section 2.2), the state machine is
constructed on the principle of sliding block codes [29].
A window of length D on the symbol sequence S =
. . . , s−2, s−1, s0, s1, s2, . . . is shifted to the right by one
symbol, such that it retains the last (D − 1) symbols of
the previous state and appends it with the new symbol
at the end. The states of the machine are represented by
blocks sisi+1si+2 . . . si+D−1 in the symbol sequence. Each state
belongs to an equivalence class of strings characterized by
a specific word of length D at the leading edge. Thus, with
cardinality |�| of the alphabet and depth D of a symbol string
of a state, the total maximum number of states in the D-Markov
machine is given by |�|D. The state machine moves from one
state to another upon occurrence of a symbol. All symbol
sequences that have the same last D symbols represent the
same state. The machine constructed in this fashion is called
the D-Markov machine [28], because of its Markov properties.

Definition. S = . . . , s−2, s−1, s0, s1, s2, . . . is called the Dth
order Markov process if the probability of the next symbol
depends only on the previous (at most) D symbols, i.e.

P(si|si−1si − 2 . . . si−D . . .) = P(si|si−1si − 2 . . . si−D).

The finite-state machine constructed above has D-Markov
properties because the probability of occurrence of the symbol
σi
 on a particular state depends only on the configuration
of that state, i.e., the previous D symbols. The states of the
machine are marked with the corresponding symbolic word
permutation and the edges joining the states indicate the
occurrence of a symbol σi
 . The occurrence of a symbol at
a state may keep the machine in the same state or move it to a
new state.

Definition. The probability of transitions from the state q j to
the state qk belonging to the set Q of states under a transition
δ : Q × � → Q is defined as [28]

π jk = P(σ ∈ � | δ(q j, σ ) → qk);
∑

k

π jk = 1. (6)

Thus, for D-Markov machines, the irreducible stochastic
matrix � ≡ [

πi j
]

describes all transition probabilities between
states with at most |�|D+1 nonzero entries.

The time series data at the reference condition (pure H2),
set as a benchmark, generate the state transition matrix �

that, in turn, is used to obtain the state probability vector p
whose elements are the stationary probabilities of the state
vector, where p is the left eigenvector of � corresponding to
the (unique) unit eigenvalue. The state probability vector q is
obtained from time series data at a (possibly) contaminated
condition. The partitioning of time series data and the state
machine structure should be the same in both cases, but the
respective state transition matrices could be different.

Pattern changes take place in the EC sensor due
to parametric variations. These variations are a result of
poisoning of the membrane, difference in the diffusion
properties of the operating gases, etc. The probability
distributions obtained by analyzing the current response for
different concentration/composition of contaminants serve as
low-dimensional feature vectors which are unique to that
particular operating condition.

In light of the above description, the major advantages
of SDF which make this technique ideal for the current
application are as follows.

• Robustness to measurement noise and spurious signals.
The procedure of SDF is robust to measurement noise and
spurious disturbances and it filters out the noise at different
steps. First of all, coarse graining of the continuous data
(i.e., partitioning into finite blocks) and generation of a
symbol sequence eliminate small measurement noise [28].
Secondly, the Hilbert transform also contributes in the
signal–noise separation of the raw time series data [36].
Finally, the state probabilities are generated by passing a
long symbol sequence over the finite-state machine, which
further eliminates small (zero-mean) measurement noise.

• Adaptability to low-resolution sensing due to coarse
graining in space partitions [28].

• Applicability to networked communication systems
due to the capability of data compression into low-
dimensional pattern vectors and error-free transmission
over networked systems. Future research is envisioned in
the area.

2.4. Pattern classification with artificial neural networks

The SDF algorithm extracts a low-dimensional feature vector
for each operating condition. The next task, that is, pattern
recognition and classification, can be completed with a
multitude of existing algorithms such as maximum entropy
classifiers [40], naive Bayes classifiers [41], decision trees
[42], support vector machines [43], kernel estimation [44] and
K-nearest-neighbor [45] algorithms as well as neural networks.
For the current purpose, a neural network was trained, so that
a particular class of pattern vectors representing a specific
operating condition leads to a specific target class.

2.5. Classification results

In order to validate the concept of the EC sensor based
on SDF, a set of experiments were performed on an EC
sensor using H2 contaminated with CO and N2 respectively

4
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Figure 2. Schematic of the experimental test setup.

at varying contamination levels. Carbon monoxide (CO)
and nitrogen (N2) were chosen to probe the ability of the
algorithm to leverage both physical and EC differences
between contaminants to make outcome determinations. That
is, CO was chosen because it is known to chemisorb onto the
surface of the platinum in the polymer electrolyte fuel cell
(PEFC) catalyst layer [46], even at very low concentrations,
thus poisoning the catalyst layer. Such small concentrations
(up to 20 ppm shown here), however, have virtually no effect
on the diffusion of hydrogen to the catalyst layer. Therefore,
CO represents a family of contaminants that interact in a
purely EC manner (chemisorption) with negligible effects on
the diffusion of hydrogen. Conversely, N2 is known to have
no adsorption effect on the platinum catalyst layer within the
operating conditions of the PEFC. With 25% N2 content in
the anode gas stream, however, the diffusion of hydrogen to
the anode catalyst layer is drastically inhibited. Thus, the N2

represents a family of contaminants that alter the diffusion of
the electrochemically active species (in this case, hydrogen)
to the catalyst layer, yet do not significantly adsorb on the
catalyst layer.

2.5.1. Experimental setup. Experiments were performed
using a 850 C fuel cell test station (Scribner Associates
Inc.) and a 5 cm2 fuel cell with serpentine channels (Fuel
Cell Technologies Inc.). A commercially available membrane
electrode assembly (MEA) with symmetrical Pt loading of
0.3 mg Pt cm−2 was used in the cell. The SGL 10 BB-
type diffusion media were used with a microporous layer
and hydrophobic treatment. Anode and cathode humidifier
temperatures were controlled to meet a specific RH value at
the operating temperature.

Figure 2 shows the experimental arrangement used in the
validation of the sensor. Ultra high purity hydrogen (99.999%)
and certified hydrogen gas bottles with premixed CO, supplied
by Airgas Inc., were used for the experiments. Flow rates were
controlled with calibrated mass flow controllers.

2.5.2. Measurement and data analysis. In all the
experiments, the flow rates on the anode and cathode were
kept constant at 69 and 250 standard cm3 min−1 (sccm),

respectively, which corresponded to a stoichiometry of 2 and
3 at 1 A cm−2. During the experiment, the cell temperature
was maintained at 65 ◦C. Humidification temperatures were
maintained such that RH at the anode and cathode inlets were
88% and 100% RH, respectively.

The polarization curves were obtained by running in
galvanostatic mode, dwelling at each current step for 1 min
in order to reduce the small timescale transients. Voltage
values reported at each step were averaged over the duration
of the step. Finer steps were used in the low current density
region where changes in voltage are more rapid due to kinetic
changes. Also, for the contaminated polarization curves, finer
steps were used to improve resolution of performance.

In figure 3, selected polarization curves indicate the
performance of the fuel cell with pure hydrogen on the
anode, hydrogen contaminated with 20 ppm CO and hydrogen
contaminated with 25% N2. The three curves indicate
the fundamental difference of the two contaminants: CO
chemisorbs onto the catalyst surface, severely reducing the
performance of the cell. Nitrogen inhibits hydrogen gas
diffusion to the electrode, which affects the mass-transport
behavior at higher current; as shown, currents higher than
1.3 A cm−2 could not be sustained because of the diffusion
limitation.

In order to generate the time series data of current for
each CO level, it is necessary to perturb the EC system using a
voltage pulse when the sensor reaches a poisoned steady state.
For that purpose, an input voltage pulse, alternating between
0.65 and 0.45 V repeatedly with a 5 s dwell time at each value,
was used to excite the sensor. The input voltage cycle was the
same for the healthy (i.e. pure H2) system, for different CO
levels and for different levels of N2 contamination.

Current response was measured using a Tektronix
AMA6302 Hall effect current probe, at a sampling frequency
of 30 Hz. A time series containing a total of 10 000 data
points was collected over 50 cycles. The time series data were
analyzed using the SDF method to extract the characteristic
pattern vector for each contamination level and species.

Figure 4 shows the dynamic current response of the fuel
cell when the applied potential was switched between 0.65 and
0.45 V as indicated on the secondary x-axis. In all cases, the
uncontaminated cell yields the highest current, as expected.
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Figure 4. Current response of the EC sensor for the voltage pulse (65 ◦C) for 0, 5 and 20 ppm CO, 25% N2 and the mixture of these gases.

When poisoned with CO, the current is stable but altered.
There is a drastic reduction in current with 20 ppm CO due to
the high surface coverage of CO at the catalyst surface. When
the anode gas stream is contaminated with N2, a unique signal
is observed. The current is stable when the applied voltage is
0.65 V, indicating that the diffusion of hydrogen through the
nitrogen environment is sufficient to sustain the demand of
the applied potential. With higher concentrations of nitrogen,
lower current is expectedly observed, indicating the inhibited
diffusion and reduced concentration of hydrogen. At 0.45 V
with N2 contamination, the signal fluctuates and decreases
with time because the diffusion of H2 through the N2 inert
gas cannot sustain the EC reaction. That is, the hydrogen at
the catalyst surface is completely consumed, and the mass-
transport of hydrogen through nitrogen becomes the limitation.
This mass-transport-limited condition was also observed in
the polarization curves (figure 3), noting that currents higher
than 1.3 A cm−2 were not obtainable with 25% N2 in the
anode gas stream. In general, the current response to a step

change in voltage is a function of various physicochemical
phenomena, which generally have different timescales. For
example, all diffusive mass-transport processes through liquid,
gas and ionomer phases are dependent on the environmental
conditions and are relatively slow responses compared to
charge transport and EC kinetic processes. Other phenomena
such as adsorption/desorption, heat transfer and ion transfer
in the electrolyte also occur with different response times.
The result is a time varying response that is rich in data
that can be used as a diagnostic tool with proper signal
processing to distinguish between these various timescale-
dependent processes. The key idea is thus the use of different
voltage step changes to stimulate unique current responses
which can be used to separate these processes and indicate the
extent to which they have been altered by the environmental
conditions (e.g., gaseous poison).

2.5.3. Signal processing with SDF. The top row of figure 5
exhibits the current response recorded by perturbing the sensor
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Figure 5. Row (1): current response of the EC sensor for (left to right) pure H2, H2 + 5 ppm CO, H2 + 20 ppm CO, H2 + 25% N2,
H2 + 5 ppm CO + 25% N2 and H2 + 20 ppm CO + 25% N2 contaminated conditions, respectively; row (2): corresponding pattern (i.e.,
state probability) vectors for each condition.

with a voltage pulse of 5 s duration. Each column depicts a
scenario, where the sensor is subjected to different gases at
different concentrations. From left to right, the gases are pure
H2, H2 mixed with 5 ppm CO, 25% N2 and 25% N2 + 5 ppm
CO contaminated conditions, respectively.

For ASSP of the time series data described in section 2.2,
maximum entropy partitioning is employed in the radial
direction with |�R| = 2, while using uniform partitioning
in the angular direction with |�A| = 3. Thus, the alphabet size
|�| � |�R| × |�A| = 6 and a depth of D = 1 have been
selected. The pattern vector obtained by constructing the D-
Markov machine is a representation of the dynamical system
that characterizes the EC sensor operation under a particular
operating condition. The state probability vectors are shown
as histograms in the bottom row in figure 5. This visualization
displays how the structure of the underlying probability
distribution changes as the concentration of contaminants or
the nature of the poisoning mechanism changes.

To test the robustness of the algorithm, each experiment
was performed several times to generate 47 sets of data
with different contaminants and the data-set was used to
train and test a two-layer feed-forward network, with sigmoid
hidden and output neurons. Such networks can classify vectors
arbitrarily well, given enough neurons in its hidden layer.
The network was trained with scaled conjugate gradient back-
propagation [47].

2.5.4. Classification. As an initial benchmark test, 18 of
the first 24 pattern vectors were randomly selected and used
for training the neural net. The remaining six were used for
validation. This was repeated to generate a statistic about the
true positive rate and the false positive rate of the classifier.

The results were uniformly consistent and the neural
network could correctly classify the four classes of gas
mixtures (class 1–4). However, the main focus of this work
is to investigate the efficacy of the algorithm in predicting the
combination of gaseous contaminants while being trained with
only single contaminants. This characterizes a very important
scenario in real world CWA monitoring, since even though a
classifier may be trained for recognizing single CWA agents, it
may be needed to identify that gas in the presence of a myriad
of other toxic or non-toxic gases. Even the presence of dust can

act as a deterrent to correct classification. For that purpose, in
the second phase, the neural net was only trained with patterns
corresponding to classes 1, 2, 3 and 4, i.e. pure H2, H2 + 5 ppm
CO, H2 + 25% N2 and H2 + 20 ppm CO, respectively. In the
testing phase, however, in addition to all these gases, pattern
vectors characterizing two other mixtures of H2 + 5 ppm CO
+ 25% N2 and H2 + 20 ppm CO + 25% N2 were also fed
as input to the trained neural net. The outputs of the net is
displayed in table 1.

It may be noted that for data-sets 1 through 24
(corresponding to pure gas or single contaminant conditions),
the outputs of the neural net unambiguously predict the
class to which they should belong, indicated by ∼1 for one
and only one class, while being ∼0 for all other classes.
However, for sets ranging from 25 to 29, the outputs predict
membership in both classes 2 and 3, which implies that the
pattern contains characteristics derived from both CO and
N2. Only for data-set 28, the classifier puts unequal weight
in class 3 compared to class 2. But even that can be easily
overcome using thresholds. For example, if the threshold is
set as 1%, i.e. a signal is considered to be a member of a
particular class if the membership indicator is � 0.01, it can
be easily verified that each one of the data-sets 1 through 24 is
uniquely and correctly classified. Thus, this method is able to
correctly predict contaminant mixtures containing 5 ppm CO
and 25% N2, while having been trained with only the single
contaminants separately. However, it cannot be claimed that
1% will serve as the optimum threshold for all contaminant
mixtures. A compromise between false positive rate and true
positive rate by constructing a receiver-operating characteristic
(ROC) curve can be used to find the optimum threshold for a
particular target contaminant.

However, the most interesting aspect of this classification
scheme manifests itself in the data-sets ranging from 30 to
47. Each and every pattern vector characterizing a mixture
of H2 + 20 ppm CO + 25% N2 is wrongly classified as
belonging to class 4, rather than a mixture of classes 3 and
4. The reason becomes obvious if the current response and
the corresponding state probability vectors shown in columns
3 and 6 in figure 5 are compared. As indicated by column 3
of this figure, H2 + 20 ppm CO poisons the catalyst surface
resulting in significantly lowered current compared to pure H2.
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Table 1. Membership indicators for the four classes.

Data Inference Target
set Pure H2 H2 + 5 ppm CO H2 + 25% N2 H2 + 20 ppm CO class class

Class 1 Class 2 Class 3 Class 4

1 0.9999 0.0001 0.0000 0.0000 1 1
2 0.9998 0.0002 0.0000 0.0000 1 1
3 0.9991 0.0008 0.0000 0.0000 1 1
4 0.9988 0.0008 0.0000 0.0000 1 1

5 0.0000 1.0000 0.0000 0.0000 2 2
6 0.0001 0.9999 0.0000 0.0000 2 2
7 0.0000 1.0000 0.0000 0.0000 2 2
8 0.0000 1.0000 0.0000 0.0000 2 2
9 0.0000 1.0000 0.0000 0.0000 2 2

10 0.0000 1.0000 0.0000 0.0000 2 2
11 0.0000 1.0000 0.0000 0.0000 2 2
12 0.0000 1.0000 0.0000 0.0000 2 2
13 0.0000 1.0000 0.0000 0.0000 2 2

14 0.0000 0.0000 1.0000 0.0000 3 3
15 0.0000 0.0000 1.0000 0.0000 3 3
16 0.0000 0.0000 1.0000 0.0000 3 3

17 0.0000 0.0000 0.0000 1.0000 4 4
18 0.0000 0.0000 0.0000 1.0000 4 4
19 0.0000 0.0000 0.0000 1.0000 4 4
20 0.0000 0.0000 0.0000 1.0000 4 4
21 0.0000 0.0000 0.0000 1.0000 4 4
22 0.0000 0.0000 0.0000 1.0000 4 4
23 0.0000 0.0000 0.0000 1.0000 4 4
24 0.0000 0.0000 0.0000 1.0000 4 4

25 0.0000 0.9876 0.8079 0.0000 2 + 3 2 + 3
26 0.0000 0.4089 0.9451 0.0000 2 + 3 2 + 3
27 0.0000 0.7609 0.8009 0.0000 2 + 3 2 + 3
28 0.0000 0.0479 0.9874 0.0000 2 + 3 2 + 3
29 0.0000 0.6333 0.5095 0.0000 2 + 3 2 + 3

30 0.0000 0.0000 0.0000 1.0000 4 3 + 4
31 0.0000 0.0000 0.0000 1.0000 4 3 + 4
32 0.0000 0.0000 0.0000 1.0000 4 3 + 4
33 0.0000 0.0000 0.0000 1.0000 4 3 + 4
34 0.0000 0.0000 0.0000 1.0000 4 3 + 4
35 0.0000 0.0000 0.0000 1.0000 4 3 + 4
36 0.0000 0.0000 0.0000 1.0000 4 3 + 4
37 0.0000 0.0000 0.0000 1.0000 4 3 + 4
38 0.0000 0.0000 0.0000 1.0000 4 3 + 4
39 0.0000 0.0000 0.0000 1.0000 4 3 + 4
40 0.0000 0.0000 0.0000 1.0000 4 3 + 4
41 0.0000 0.0000 0.0000 1.0000 4 3 + 4
42 0.0000 0.0000 0.0000 1.0000 4 3 + 4
43 0.0000 0.0000 0.0000 1.0000 4 3 + 4
44 0.0000 0.0000 0.0000 1.0000 4 3 + 4
45 0.0000 0.0000 0.0000 1.0000 4 3 + 4
46 0.0000 0.0000 0.0000 1.0000 4 3 + 4
47 0.0000 0.0000 0.0000 1.0000 4 3 + 4

When 25% N2 is added to make the H2 + 20 ppm CO + 25%
N2 mixture, the current response very closely resembles the
response of the same mixture without the 25% N2. Therefore,
it is clear that the CO surface adsorption on the catalyst surface
dominates the performance characteristics, and the addition of
the 25% N2 only slightly dilutes the poisoning level.

This particular situation is a good example that showcases
the difficulties associated with the reliable detection of
environmental contaminants in practice. The presence of a
myriad of possibly harmless gases confuses the detection

mechanism leading to unacceptable false alarm rates and
missed events. However, the flexibility inherent in the smart EC
sensor can be used to mitigate this problem to a large extent. In
order to extract more information than available from the data-
sets just described, the sensor is next operated at an elevated
temperature of 75 ◦C rather than 65 ◦C. Since all adsorption
processes are exothermic, and the sticking coefficient of the
CO on the catalyst surface follows an Arrhenius law, raising
the temperature will reduce the surface overage and mitigate
the effect of CO on performance. The diffusive processes in the
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Figure 6. Current response of the EC sensor for (left to right) pure H2, H2 + 20 ppm CO, H2 + 25%N2 and H2 + 20 ppm CO + 25% N2

contaminated conditions, respectively.

Table 2. Membership indicators for the three classes at elevated
temperature.

Data H2 H2 Inference Target
set Pure H2 + 25% N2 + 20 ppm CO class class

Class 1 Class 3 Class 4

1 0.9932 0.0045 0.0002 1 1
2 0.9983 0.0003 0.0013 1 1
3 0.8493 0.0379 0.0004 1 1
4 0.9977 0.0006 0.0013 1 1
5 0.9931 0.0079 0.0004 1 1
6 0.9715 0.0034 0.0008 1 1

7 0.0009 0.9990 0.0014 3 3
8 0.0005 0.9995 0.0008 3 3
9 0.0009 0.9987 0.0016 3 3

10 0.0006 0.9988 0.0017 3 3
11 0.0003 0.9992 0.0015 3 3
12 0.0006 0.9987 0.0014 3 3
13 0.0007 0.9992 0.0009 3 3
14 0.0008 0.9993 0.0004 3 3
15 0.0014 0.9877 0.0057 3 3

16 0.0003 0.0002 1.0000 4 4
17 0.0004 0.0001 0.9999 4 4
18 0.0003 0.0003 0.9997 4 4
19 0.0003 0.0001 0.9999 4 4
20 0.0008 0.0003 0.9995 4 4
21 0.0005 0.0004 0.9995 4 4
22 0.0001 0.0005 0.9999 4 4
23 0.0003 0.0001 0.9999 4 4
24 0.0004 0.0004 0.9996 4 4

25 0.0001 0.9809 0.7146 3 + 4 3 + 4
26 0.0010 0.9985 0.0476 3 + 4 3 + 4
27 0.0010 0.9974 0.1131 3 + 4 3 + 4
28 0.0003 0.9378 0.2659 3 + 4 3 + 4
29 0.0015 0.9915 0.3288 3 + 4 3 + 4
30 0.0037 0.9978 0.3749 3 + 4 3 + 4
31 0.0004 0.9955 0.2676 3 + 4 3 + 4
32 0.0002 0.9926 0.3158 3 + 4 3 + 4

gas phase being weakly dependent on temperature, the effect
due to N2 will remain relatively unchanged at the elevated
temperature.

Following this logic, in the second phase, the same
experiments using pure H2, H2 + 20 ppm CO, H2 + 25%
N2 and finally H2 + 20 ppm CO + 25% N2 were carried
out with the exact same experimental parameters except
the temperature was elevated to 75 ◦C. The pattern vectors
produced by analyzing the current response (figure 6) with
SDF were passed through the neural network and the output
of the net is reported in table 2. The pure gas and the
single contaminants are classified successfully, but the major

improvement is observed in data-sets 25–32 which correspond
to a mixture of H2 + 20 ppm CO + 25% N2. Unlike before, the
mixture of H2 + 20 ppm CO + 25% N2 is correctly classified
as belonging to classes 3 and 4.

The inclusion of temperature as an operating parameter
thus resulted in much better specificity of the sensor. Utilizing
available parameters such as humidity, gas flow rate, etc,
and varying them in conjunction with temperature can thus
potentially result in a further increase in specificity, more
confident detection and lower false alarm rates. Extensively
tested and validated, this capability would be a unique asset
invaluable in real world toxic vapor identification systems.

3. Summary, conclusions and future work

The work presented in this paper reports the use of a stochastic
signal processing tool called SDF for pattern extraction
from the EC sensor dynamic response. Perturbing the sensor
with an oscillating potential rather than static voltage levels
enabled the extraction of statistically rich information from
the current response. The shape of the dynamic response is
a function of the degree and mechanism of contamination
by different species, and therefore carries signatures of the
operating condition. The current response to an oscillating
perturbation was first transformed into an analytic signal
through Hilbert transform and then discritized. A PFSA
representation was constructed on the principle of sliding block
codes with characteristic state transition matrices. The state
probability vectors were then extracted in the form of low-
dimensional pattern vectors for the correct classification of
gases. Fusing information obtained from operating the sensor
at different temperatures, correct classification between single
contaminant gases as well as gas mixtures could be achieved
with high accuracy and very low false alarm rates.

The optimum parameters for detecting each target
contaminant and each target concentration depend on the EC
process through which they interact with the electrochemical
system. The primary method of CO interaction being surface
adsorption on the platinum-based catalyst, in this paper, an
elevated temperature operating condition was used in addition
to the normal operating temperature to liberate some of
the CO from the surface forcing the 20 ppm solution to
function effectively with lesser concentration, thus enabling
more accurate detection in a mixture of contaminants.

Even though the EC mechanism which governs the
interaction of different poisonous gases with the sensor will
be widely different from each other, similar considerations
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will drive the operating parameter choice in the practical
cases of interest. In general, however, if the physicochemical
processes involved with the contaminant species involved are
considered and proper methodologies are created to separate
these effects, the technique described in this paper will be
able to obtain improved specificity due to the utilization of
dynamic responses over static response. However, extensive
testing under strict laboratory conditions will enable this to be
claimed with certainty. This will be the natural extension of
this research in the future.

In a broader context, the sensors developed here could
be networked into large coordinated clusters. The redundancy
would greatly increase the veracity of the sensor output, and
could also be used to dynamically identify the source location,
spread and timing of contamination in urban environments.
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